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The language of first-order logic standardly makes use of the notation of quan-
tifiers and variables. This notation is used to express statements of multiple
generality, such as ∀x∃y(Ryx→ Rxy). An alternative notation—originally de-
veloped independently by Quine and Bourbaki in [12] and [1]—makes use of wire
diagrams, rendering a quantified formula such as ∀x∃y(Ryx→Rxy) as follows.3

∀∃(R → R )

In a wire diagram, the variables disappear altogether. The link between a quan-
tifier and the argument position into which it binds is instead represented by a
“wire” that connects them.

It has recently been argued that this wire-diagram notation is superior to
the quantifier-variable notation because it can preserve compositionality without
positing overly fine-grained meanings. (See: [5], ([2]: 14), ([13]: 215), and ([11],
38).) Consider the fact that the open sentences (1) and (2) differ semantically.

(1) Rxx

(2) Rxy

Specifically, (1) and (2) embed differently: ∀x∃y(Ryx→Rxx) may be false while
∀x∃y(Ryx→Rxy) is true.

– compositionality: If α = η(β1, . . . , βn) and γ = η(δ1, . . . , δn), then if JβiK
= JδiK (for all i), then JαK = JγK. ([8])

– Formulae (1) and (2) differ semantically: J(1)K 6= J(2)K
– (1) = ρ(R, x, x) and (2) = ρ(R, x, y), where ρ is the formation rule that

combines an n-ary predicate with n terms.
– Therefore, ‘x’ and ‘y’ differ semantically, or JxK 6= JyK

Among other ills, this approach seems to make the semantic differences between
variables objectionably fine-grained and even typographic (see [5]).

Advocates of wire-diagrams suggest that these problems can be avoided by
disavowing explicit variables in the notation.

3 Peirce’s diagrammatic representation of quantificational logic in terms of “existential
graphs” shares this feature of linking argument positions with wires. See Peirce
(1903) A Syllabus of Certain Topics of Logic, pp. 15-23.
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. . . if we adopt the Quine-Bourbaki notation, then we will not even be able to

ask whether typographically distinct variables like ‘x’ and ‘y’ have different

‘semantic roles’ ([2]: 14)

However, the syntactic formation and semantic evaluation rules for wire di-
agrams are rarely developed explicitly. Drawing on research from [9] and [10],
this talk develops and compares two approaches. One approach introduces the
wires into a formula by a transformation rule (in the sense of [3]). The other
approach derives first-order formulae in the standard way, and wires are treated
as an additional syntactic feature or as a contextual parameter against which a
formula is evaluated.

The transformational approach is strongly compositional, so that the mean-
ing of a complex is a function of the meanings of its immediate constituents,
the expressions from which it syntactically derives. It is difficult to determine
whether the additional input approach is strongly compositional, because the
approach makes the notion of an immediate syntactic constituent unclear. How-
ever, it is weakly compositional.

1 Transformational Approaches

The transformational approach essentially mimics the syntactic derivation and
semantic evaluation in the language of first-order logic. The language of standard
first-order logic has a stock of n-ary predicates (Fn1 ,Fn2 ,. . . ) and terms, including
constants (a, b,. . . ) and variables (x1, x2,. . . ). An operation ρ combines an n-ary
predicate and n terms to form an atomic sentence.

An operation ∧ takes two sentences φ and ψ to their conjunction, ∧(φ, ψ).
An operation, ¬ takes a sentence φ to its negation ¬φ. Quantified sentences are
derived from other sentences in two steps. An operation λ forms a predicate
out of a sentence variable ν and a sentence φ, λ(ν, φ). A final rule ∀ attaches a
quantifier to a derived predicate. Thus a quantified formula such as ∀xRxb can
be derived as ∀λ(x, ρ(R, x, b)).

If the language is compositional, each syntactic operation η (including ρ, ∧,
¬, λ, and ∀) will be associated with a function fη that maps the semantic values
of its input expressions to the semantic value of its output expression. Thus,
J∀xRxbK = f∀fλ(JxK, fρ(JRK, JxK, JbK)).

On the alternative approach, the variable binding operation λ(ν, φ) removes
occurrences of the variable ν from φ and connects them with wires which are
then connected to the initial ∀.

∀λ(x, ρ(R, x, b)) = ∀R b

While this approach may be visually illuminating, it does not help with the
problem of fine-graining the variables. For, if the operation is to be compositional,
then the syntactic operations must still each correspond to a semantic operation.
Thus, J∀λ(x, ρ(R, x, b))K = f∀fλ(JxK, fρ(JRK, JxK, JbK)). Consider again (1) Rxx
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and (2) Rxy. These must differ semantically because they figure in the syntactic
derivation of ∀x∃y(Ryx→Rxx) and ∀x∃y(Ryx→Rxy), respectively. But since
(1) = ρ(R, x, x) and (2) = ρ(R, x, y), it follows by compositionality that JxK 6=
JyK.

2 Additional Input Approaches

The alternative approach treats the wires as additional inputs to semantic pro-
cessing. For example, Fine ([4]: 628) conceives of the coordination scheme as
syntactic in nature: “the syntactic object of evaluation will no longer be a se-
quence of expressions but a coordinated sequence of expressions”. Alternatively,
the wire might be taken as an auxiliary input to semantic processing. In either
implementation, the wires are treated as an equivalence relation on the occur-
rences of variables ([5]: 30). See [7] and [6] for related discussion of Bourbaki’s
syntax.

Pickel and Rabern formalize Fine’s approach to wire diagrams ([9]). It is
shown that the approach is weakly compositional so that if two formulae differ
semantically, then their terminal constituents or mode of combination must differ
semantically. However, the notion of immediate constituent—therefore strong
compositionality—becomes difficult to assess.

We conclude that wire diagrams do not have the alleged semantic advantages
over the purely symbolic notation of quantifiers and variables.
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