Dodecagons for modal opposition in the Quantified Argument Calculus

Matteo Pascucci ${ }^{1[0000-0003-4867-4082]}$ and Jonas Raab ${ }^{2[0000-0003-4292-9566] ~}$
${ }^{1}$ Central European University, Quellenstraße 51, 1100, Vienna, Austria
pascuccim@ceu.edu
${ }^{2}$ University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
jonas_raab@web.de

Abstract

We analyse dodecagons of opposition for de re and de dicto modalities in Quarc. The logical theories of the two dodecagons are encoded via inference trees; moreover, we provide a decidability result and a model-theoretic semantics for these theories.

Keywords: Modal Dodecagons • Inference Trees • Quarc.

Overview. The Quantified Argument Calculus (Quarc) is a logical system tailored to the syntax of natural languages [1]. In Quarc a quantifier forms, together with a unary predicate, an argument of predication; e.g., "every musician plays an instrument" is $(\forall M, \exists I) P$. As in [2], we extend the basic Quarc language with operators for necessity (\square) and possibility (\diamond), used either as sentential operators (e.g., "it is possible that Pegasus flies" is $\diamond p F$) or as modes of predication (e.g., "Pegasus possibly flies" is $p \diamond F$). We define twelve fundamental de re and de dicto modalities, graphically represent their logical relations via dodecagons of opposition and encode the resulting logical theories via lists of inference trees. Finally, we provide a model-theoretic semantics for the theories.

Formal language. Primitive symbols in our Quarc language \mathcal{L} are: a set of unary predicates Pred; operators for negation (\neg), conjunction (\wedge), disjunction (\vee), necessity (\square) and possibility (\diamond); universal quantifier (\forall) and particular quantifier (\exists); round brackets. The set of basic modalities is MOD $=$ $\{\epsilon, \neg, \diamond, \square, \diamond \neg, \square \neg, \neg \diamond, \neg \square, \neg \diamond \neg, \neg \square \neg\}$, where ϵ is an empty sequence. A basic modality is proper iff it includes \diamond or \square. The following are pairs of analogous modalities: $\{\diamond, \neg \square \neg\},\{\square, \neg \diamond \neg\},\{\neg \diamond, \square \neg\}$ and $\{\neg \square, \diamond \neg\}$.

Grammar. The set of wffs in \mathcal{L} is the smallest closed under the following clauses, where $S, R, P \in \operatorname{Pred}, \Pi, \Pi^{\prime} \in\{\forall, \exists\}, \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}, \mathrm{~m}_{4} \in \mathrm{MOD}$ and $\otimes \in\{\wedge, \vee\}$:
$-\mathrm{m}_{1}(\Pi S) \mathrm{m}_{2} P$ is a wff if at most one between m_{1} and m_{2} is a proper modality;
$-\mathrm{m}_{1}(\Pi S) \mathrm{m}_{2} P \otimes \mathrm{~m}_{3}\left(\Pi^{\prime} R\right) \mathrm{m}_{4} P$ is a wff if at most one between m_{1} and m_{2}, as well as between m_{3} and m_{4}, is a proper modality.

We use $\phi, \psi, \chi \ldots$ for wffs, $\Gamma, \Delta, \Theta \ldots$ for sets of wffs and sometimes omit brackets.

De re modalities. Below are twelve de re modalities in \mathcal{L}. The label for a modality consists of two letters, the first being \mathbf{U} (universality) or \mathbf{P} (particularity), the second being \mathbf{N} (necessity), \mathbf{P} (possibility), \mathbf{I} (impossibility), \mathbf{V} (avoidability), \mathbf{B} (absoluteness) or \mathbf{C} (contintency). UN: $(\forall S) \square P$; UP: $(\forall S) \diamond P ; \mathbf{P N}:(\exists S) \square P$; PP: $(\exists S) \diamond P$; UI: $(\forall S) \square \neg P$; UV: $(\forall S) \diamond \neg P$; PI: $(\exists S) \square \neg P$; PV $(\exists S) \diamond \neg P$; UB: $(\forall S) \square P \vee(\forall S) \square \neg P$; UC: $(\forall S) \diamond P \wedge(\forall S) \diamond \neg P ; \mathbf{P B}:(\exists S) \square P \vee(\exists S) \square \neg P ; \mathbf{P C}$: $(\exists S) \diamond P \wedge(\exists S) \diamond \neg P$.

De dicto modalities. The following are twelve de dicto modalities in \mathcal{L}. Inverse labelling conventions apply. NU: $\square(\forall S) P ; \mathbf{P U}: \diamond(\forall S) P ; \mathbf{N P}: \square(\exists S) P ; \mathbf{P P}$: $\diamond(\exists S) P$; IU: $\square(\forall S) \neg P ; \mathbf{V U}: \diamond(\forall S) \neg P ; \mathbf{I P}: \square(\exists S) \neg P ; \mathbf{V P}: \diamond(\exists S) \neg P ; \mathbf{B U}:$ $\square(\forall S) P \vee \square(\forall S) \neg P ; \mathbf{C U}: \diamond(\forall S) P \wedge \diamond(\forall S) \neg P ; \mathbf{B P}: \square(\exists S) P \vee \square(\exists S) \neg P ; \mathbf{C P}:$ $\diamond(\exists S) P \wedge \diamond(\exists S) \neg P$.

Fig. 1. Schema of a dodecagon of opposition for de re and de dicto modalities.

Dodecagons. The geometry of de re and de dicto modalities adheres to the schema in Fig. 1. Red lines connect contradictories (exactly one of which is true), blue lines connect contraries (which cannot be jointly true), green lines connect sub-contraries (which cannot be jointly false) and black arrows connect a modality with its subalterns (logically entailed by the former).

Logical theories. The logical theory of a dodecagon, denoted by $\mathbb{L} \mathbb{T} r$ for de re modalities and by $\mathbb{L} \mathbb{T} d$ for de dicto ones, is specified via a list of inference trees.

Definition 1 (Inference Tree). An inference tree is a finite set $T=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ s.t. for $1 \leq i \leq n, \sigma_{i}$ is a finite sequence of sets of wffs (a branch); all branches start with the same set of wffs, which is said to be the root of T. Each set of wffs in a branch is ranked with a progressive number, starting with $\mathbf{0}$.

The relation of immediate inference within a branch σ_{i} in a tree T is represented by \rightsquigarrow. If σ_{i} is not the sole branch in T, then we use an indexed arrow \rightsquigarrow_{i}.

Definition 2 (Set Derivability - Trees). A set Γ is derivable from a set Δ in a tree T iff for every branch σ in T, both $\Delta, \Gamma \in \sigma$ and Δ precedes Γ in σ.
Definition 3 (Set Derivability - Logical Theories). A set Γ can be derived from a set Δ in a logical theory $\mathbb{L T}$ iff there are trees T_{1}, \ldots, T_{n-1} and sets $\Delta_{1}, \ldots, \Delta_{n}$ s.t.: (i) $\Delta=\Delta_{1}$ and $\Gamma=\Delta_{n}$, and (ii) for $1 \leq j<n, \Delta_{j+1}$ can be derived from Δ_{j} within tree T_{j}.
Given two finite sets of wffs Γ and Δ, the problem of checking whether Γ can be derived from Δ within a logical theory $\mathbb{L} \mathbb{T}$ is the derivability problem for finite sets in $\mathbb{L} \mathbb{T}$. Below are examples of inference trees shared by $\mathbb{L} \mathbb{T} r$ and $\mathbb{L} \mathbb{T} d(\mathrm{~T} 1)$, peculiar to $\mathbb{L} \mathbb{T} r(\mathrm{~T} 2)$ and peculiar to $\mathbb{L} \mathbb{T} d(\mathrm{~T} 3)$:

T1 0: $\Gamma_{0}=\Gamma \cup\left\{\mathrm{m}_{1}(\Pi S) \mathrm{m}_{2} P\right\} \rightsquigarrow \mathbf{1}: \Gamma_{1}=\Gamma_{0} \cup\left\{\mathrm{~m}_{1}^{\prime}(\Pi S) \mathrm{m}_{2}^{\prime} P\right\}$, provided that m_{1} and m_{1}^{\prime}, as well as m_{2} and m_{2}^{\prime}, are identical or analogous modalities.
T2 0: $\Gamma_{0}=\Gamma \cup\{\forall S \square P \vee \forall S \square \neg P\} \rightsquigarrow a \quad \mathbf{1}: \Gamma_{1 a}=\Gamma_{0} \cup\{\forall S \square P\} \rightsquigarrow_{a} \mathbf{2 : ~} \Gamma_{2 a}=$ $\Gamma_{1 a} \cup\{\exists S \square P, \forall S \diamond P\} \rightsquigarrow_{a} \mathbf{3}: \Gamma_{3 a}=\Gamma_{2 a} \cup\{\exists S \diamond P\}$. $\mathbf{0}: \Gamma_{0}=\Gamma \cup\{\forall S \square P \vee \forall S \square \neg P\} \rightsquigarrow_{b} \mathbf{1}: \Gamma_{1 b}=\Gamma_{0} \cup\{\forall S \square \neg P\} \rightsquigarrow_{b}$ 2: $\Gamma_{2 b}=$ $\Gamma_{1 b} \cup\{\exists S \square \neg P, \forall S \diamond \neg P\} \rightsquigarrow_{b} \mathbf{3}: \Gamma_{3 b}=\Gamma_{2 b} \cup\{\exists S \diamond \neg P\} ;$
T3 0: $\Gamma_{0}=\Gamma \cup\{\Delta \forall S P \wedge \Delta \forall S \neg P\} \rightsquigarrow \mathbf{1}: \Gamma_{1}=\Gamma_{0} \cup\{\Delta \forall S P, \diamond \forall S \neg P\} \rightsquigarrow \mathbf{2}:$ $\Gamma_{2}=\Gamma_{1} \cup\{\diamond \exists S P, \diamond \exists S \neg P\}$.
Theorem 1 (Decidability). The derivability problem for finite sets in $\mathbb{L} \mathbb{T} r$ and $\mathbb{L T} \mathbb{T}$ is decidable.
Definition 4 (\mathcal{L}-Model). An \mathcal{L}-model [3] is a tuple $\mathfrak{M}=\langle W, R, D, V\rangle$ s.t.:

1. W is a non-empty set (called set of possible worlds);
2. $R \subseteq W \times W$ (called accessibility relation);
3. D is a non-empty set (called domain of possible objects);
4. $V:(\operatorname{Pred} \times W) \longrightarrow \wp(D) \backslash \emptyset$ is a valuation function.

Definition 5 (Truth). We define $\mathfrak{M}, w \models \phi$ as follows (sample cases):

1. $\mathfrak{M}, w \vDash(\forall S) P$ iff. for all $a \in V(S, w), a \in V(P, w)$.
2. $\mathfrak{M}, w=(\exists S) P$ iff. for some $a \in V(S, w), a \in V(P, w)$.
3. $\mathfrak{M}, w=\square \psi$ iff. for all $u \in W$ s.t. $w R u, \mathfrak{M}, u=\psi$.
4. $\mathfrak{M}, w=\diamond \psi$ iff. for some $u \in W$ s.t. $w R u, \mathfrak{M}, u \models \psi$.

Definition 6 (Semantic Derivability). Let Δ and Γ be sets of wffs and C_{m} the class of all \mathcal{L}-models. $\Delta \models_{C_{m}} \Gamma$ iff. for every $\mathfrak{M} \in C_{m}$, if $\mathfrak{M} \models \phi$ for all $\phi \in \Delta$, then $\mathfrak{M} \models \psi$ for all $\psi \in \Gamma$.
Theorem 2 (Soundness). Syntactic derivations in $\mathbb{L T r}$ and $\mathbb{L} \mathbb{T} d$ can be mapped to semantic derivations in C_{m}.

References

1. Ben-Yami, H.: The Quantified Argument Calculus." Review of Symbolic Logic 7, 120-146 (2014)
2. Ben-Yami, H.: The Barcan formulas and necessary existence: the view from Quarc. Synthese (forthcoming)
3. Raab, J.: The relationship of QUARC and Classical Logic. Master's thesis, Ludwig-Maximilians-Universität München (2016)
