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Abstract. We analyse dodecagons of opposition for de re and de dicto
modalities in Quarc. The logical theories of the two dodecagons are en-
coded via inference trees; moreover, we provide a decidability result and
a model-theoretic semantics for these theories.
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Overview. The Quantified Argument Calculus (Quarc) is a logical system tailored
to the syntax of natural languages [1]. In Quarc a quantifier forms, together with
a unary predicate, an argument of predication; e.g., “every musician plays an
instrument” is (∀M,∃I)P . As in [2], we extend the basic Quarc language with
operators for necessity (�) and possibility (♦), used either as sentential operators
(e.g., “it is possible that Pegasus flies” is ♦pF ) or as modes of predication (e.g.,
“Pegasus possibly flies” is p♦F ). We define twelve fundamental de re and de
dicto modalities, graphically represent their logical relations via dodecagons of
opposition and encode the resulting logical theories via lists of inference trees.
Finally, we provide a model-theoretic semantics for the theories.

Formal language. Primitive symbols in our Quarc language L are: a set of
unary predicates Pred; operators for negation (¬), conjunction (∧), disjunc-
tion (∨), necessity (�) and possibility (♦); universal quantifier (∀) and par-
ticular quantifier (∃); round brackets. The set of basic modalities is MOD =
{ε,¬,♦,�,♦¬,�¬,¬♦,¬�,¬♦¬,¬�¬}, where ε is an empty sequence. A basic
modality is proper iff it includes ♦ or �. The following are pairs of analogous
modalities: {♦,¬�¬}, {�,¬♦¬}, {¬♦,�¬} and {¬�,♦¬}.

Grammar. The set of wffs in L is the smallest closed under the following clauses,
where S,R, P ∈ Pred, Π,Π ′ ∈ {∀,∃}, m1,m2,m3,m4 ∈ MOD and ⊗ ∈ {∧,∨}:

– m1(ΠS)m2P is a wff if at most one between m1 and m2 is a proper modality;
– m1(ΠS)m2P ⊗m3(Π ′R)m4P is a wff if at most one between m1 and m2, as

well as between m3 and m4, is a proper modality.

We use φ, ψ, χ... for wffs, Γ , ∆, Θ... for sets of wffs and sometimes omit brackets.
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De re modalities. Below are twelve de re modalities in L. The label for a modality
consists of two letters, the first being U (universality) or P (particularity), the
second being N (necessity), P (possibility), I (impossibility), V (avoidability),
B (absoluteness) or C (contintency). UN: (∀S)�P ; UP: (∀S)♦P ; PN: (∃S)�P ;
PP: (∃S)♦P ; UI: (∀S)�¬P ; UV: (∀S)♦¬P ; PI: (∃S)�¬P ; PV (∃S)♦¬P ; UB:
(∀S)�P ∨ (∀S)�¬P ; UC: (∀S)♦P ∧ (∀S)♦¬P ; PB: (∃S)�P ∨ (∃S)�¬P ; PC:
(∃S)♦P ∧ (∃S)♦¬P .

De dicto modalities. The following are twelve de dicto modalities in L. Inverse
labelling conventions apply. NU: �(∀S)P ; PU: ♦(∀S)P ; NP: �(∃S)P ; PP:
♦(∃S)P ; IU: �(∀S)¬P ; VU: ♦(∀S)¬P ; IP: �(∃S)¬P ; VP: ♦(∃S)¬P ; BU:
�(∀S)P ∨�(∀S)¬P ; CU: ♦(∀S)P ∧ ♦(∀S)¬P ; BP: �(∃S)P ∨�(∃S)¬P ; CP:
♦(∃S)P ∧ ♦(∃S)¬P .
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Fig. 1. Schema of a dodecagon of opposition for de re and de dicto modalities.

Dodecagons. The geometry of de re and de dicto modalities adheres to the
schema in Fig. 1. Red lines connect contradictories (exactly one of which is
true), blue lines connect contraries (which cannot be jointly true), green lines
connect sub-contraries (which cannot be jointly false) and black arrows connect
a modality with its subalterns (logically entailed by the former).

Logical theories. The logical theory of a dodecagon, denoted by LTr for de re
modalities and by LTd for de dicto ones, is specified via a list of inference trees.

Definition 1 (Inference Tree). An inference tree is a finite set T = {σ1, ..., σn}
s.t. for 1 ≤ i ≤ n, σi is a finite sequence of sets of wffs (a branch); all branches
start with the same set of wffs, which is said to be the root of T . Each set of
wffs in a branch is ranked with a progressive number, starting with 0.

The relation of immediate inference within a branch σi in a tree T is represented
by  . If σi is not the sole branch in T , then we use an indexed arrow  i.
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Definition 2 (Set Derivability - Trees). A set Γ is derivable from a set ∆
in a tree T iff for every branch σ in T , both ∆,Γ ∈ σ and ∆ precedes Γ in σ.

Definition 3 (Set Derivability - Logical Theories). A set Γ can be derived
from a set ∆ in a logical theory LT iff there are trees T1, ..., Tn−1 and sets
∆1, ...,∆n s.t.: (i) ∆ = ∆1 and Γ = ∆n, and (ii) for 1 ≤ j < n, ∆j+1 can be
derived from ∆j within tree Tj.

Given two finite sets of wffs Γ and ∆, the problem of checking whether Γ can be
derived from ∆ within a logical theory LT is the derivability problem for finite
sets in LT. Below are examples of inference trees shared by LTr and LTd (T1),
peculiar to LTr (T2) and peculiar to LTd (T3):

T1 0 : Γ0 = Γ ∪ {m1(ΠS)m2P} 1 : Γ1 = Γ0 ∪ {m′1(ΠS)m′2P}, provided that
m1 and m′1, as well as m2 and m′2, are identical or analogous modalities.

T2 0 : Γ0 = Γ ∪ {∀S�P ∨ ∀S�¬P}  a 1 : Γ1a = Γ0 ∪ {∀S�P}  a 2 : Γ2a =
Γ1a ∪ {∃S�P,∀S♦P}  a 3 : Γ3a = Γ2a ∪ {∃S♦P}.
0 : Γ0 = Γ ∪ {∀S�P ∨ ∀S�¬P}  b 1 : Γ1b = Γ0 ∪ {∀S�¬P}  b 2 : Γ2b =
Γ1b ∪ {∃S�¬P,∀S♦¬P}  b 3 : Γ3b = Γ2b ∪ {∃S♦¬P};

T3 0 : Γ0 = Γ ∪ {♦∀SP ∧ ♦∀S¬P}  1 : Γ1 = Γ0 ∪ {♦∀SP,♦∀S¬P}  2 :
Γ2 = Γ1 ∪ {♦∃SP,♦∃S¬P}.

Theorem 1 (Decidability). The derivability problem for finite sets in LTr
and LTd is decidable.

Definition 4 (L-Model). An L-model [3] is a tuple M = 〈W,R,D, V 〉 s.t.:
1. W is a non-empty set (called set of possible worlds);
2. R ⊆W ×W (called accessibility relation);
3. D is a non-empty set (called domain of possible objects);
4. V : (Pred×W ) −→ ℘(D) \ ∅ is a valuation function.

Definition 5 (Truth). We define M, w |= φ as follows (sample cases):
1. M, w |= (∀S)P iff. for all a ∈ V (S,w), a ∈ V (P,w).
2. M, w |= (∃S)P iff. for some a ∈ V (S,w), a ∈ V (P,w).
3. M, w |= �ψ iff. for all u ∈W s.t. wRu, M, u |= ψ.
4. M, w |= ♦ψ iff. for some u ∈W s.t. wRu, M, u |= ψ.

Definition 6 (Semantic Derivability). Let ∆ and Γ be sets of wffs and Cm

the class of all L-models. ∆ |=Cm
Γ iff. for every M ∈ Cm, if M |= φ for all

φ ∈ ∆, then M |= ψ for all ψ ∈ Γ .

Theorem 2 (Soundness). Syntactic derivations in LTr and LTd can be mapped
to semantic derivations in Cm.
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