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Introduction. Changing the way we represent the problem can have powerful
benefits, both pedagogically and cognitively [1,2]. The common advice to ‘draw
a picture’ prompts deep questions about the nature of representations and
problem solving: what makes up a representation, what should be considered
when choosing a representation, and how do we evaluate a representation? Our
work explores each of these questions, motivating a framework for the discussion
of representations both individually, and the links between them.

The main contribution of this work is the correspondence framework for
describing the relationships between components of representational systems,
and allowing us to compute the informational suitability and cognitive cost of
a particular representational system with respect to both a specific problem
being solved, and the particular person solving the problem. This work is part of
the broader rep2rep project at the University of Cambridge (with Prof. Mateja
Jamnik, my supervisor) and the University of Sussex (with Prof. Peter Cheng).

Representing representations. This research project introduces components
and how they can be composed into descriptions of problems, representations,
and representational systems [4]. Components are the building blocks of repre-
sentations, defined as triples of kind, value, and attributes. The ‘kind’ partitions
components into five categories, three notational—primitives, types, and patterns—
and two inferential—laws and tactics. Attributes give extra information about
components, linking them with other components through relationships such as
‘is-of-type’. Representations may be described by many components, or very few
components; components may be part of one representational system, or many.

A set of components all derived from the same source form a description.
We use RS-descriptions to capture representational systems, which hold all
components that any specific representation might be described using. A specific
representation is captured through an R-description, which is primarily a subset
of some RS-description. Problems are described with a Q-description, which is
an R-description with an importance function, assigning each component a value
between 0 and 1 based on how critical it is to capturing the problem.

Components and descriptions are intended to allow us to consistently cata-
logue problems, representations, and representational systems that are extremely
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diverse. We worked to ensure that the framework followed three principles: formal
and informal representations and systems were equally supported; no modality
(sentential, diagrammatic, or otherwise) was favoured above any other; and the
structure of the representation or system could be encoded as loosely or strictly
as necessary. This ensures our framework is widely applicable, whether in our
specific domain of interest—mathematics education—or more broadly.

Capturing similarities. The primary contribution of this PhD project is the
theory of correspondences. A correspondence is a means of linking components
from different RS-descriptions based on the probability of the component being
present in R-descriptions of representations. This allows us to understand how
information gets re-represented, and understand how effectively the informational
content is preserved.

Correspondences are triples 〈a, b, s〉 consisting of a source component formula,
a target component formula, and the correspondence’s strength [5]. We consider
the source component formula and the target component formula together to
express a relationship: that these two things ‘fill the same role’ in their respective
representational systems. For representations we say that a correspondence aims
to capture how information can be re-encoded across representations. One caveat
of this relationship is that it is not ‘all-or-nothing’: the information can be
preserved to a certain degree, ranging from perfect down to completely lost. The
degree of similarity is captured by the strength of the correspondence. Strength
is defined in terms of the probability of an R-description containing a set of
components that satisfy the component formula, and can be derived from a
dataset of R-descriptions. The strength of the correspondence 〈a, b, s〉 is

s =
Pr(b | a)− Pr(b)

1− Pr(b)
.

Correspondences can be automatically derived in some circumstances [5].
To recommend a representational system, we define two measures through

which their effectiveness can be algorithmically evaluated: informational suitabil-
ity, and cognitive cost. Informational suitability considers the problem-specific
aspects of a representational system: can it express everything the problem
requires? Cognitive cost focuses on the human: is this representational system
appropriate for this person to use? The complete definitions of these two measures
are outside the scope of this summary, but described in [4].

We have produced an implementation of the properties and correspondence
frameworks in a tool called robin. This implementation is fully automated from
reading the descriptions through to making a recommendation based on the
informational suitability calculation.

Evaluating the framework. To explore both the nature and efficacy of our
framework we have performed two evaluations. First we performed an ablation
study, in which we consider the output of robin with and without certain aspects
of components and correspondences enabled. Second we ran a user study in
which we asked mathematics teachers to perform the same representational
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system recommendation task that robin performs; we examine the responses of
the teachers and consider how these responses map to those of robin.

The ablation study pulled apart the factors influencing the informational
suitability score, and determined the contribution of each. We did this by survey-
ing mathematics and computer science researchers to evaluate the informational
suitability of representational systems for a specific problem, then correlated
these with the scores produced by our implementation of our framework. We
concluded that component importance and correspondence strength are both
important contributors to the final score, and both are required to produce a
result that correlates significantly with human experts.

The user study involved presenting mathematics teachers with descriptions
of representational systems and student personas, and asking them to evaluate
each system on its suitability to solve each of five problems in the cases of no
particular student, a novice student persona, and an expert student persona.
We established that our participating teachers do not have a consistent view
of representational system suitability when controlling for problem and student
profile, suggesting the task before us is more challenging than we first realised,
and there may be factors for which we failed to control; what agreement could be
extracted is consistent with the output of our implementation of the framework.

Contributions & future work. This work contributes a framework of corre-
spondences that allow us to compute informational suitability and cognitive cost
measures as a means of evaluating the effectiveness of representational systems.
This work has wide applications, most immediately in intelligent tutoring systems:
tools that can prompt students not just with the next step, but with hints tailored
specifically to them which can reveal deeper insights and connections.

The next phase of research is to further generalise and formalise correspon-
dences, with the aim to perform the transformation between representations
automatically, similar to structure mapping [3]. We also hope to develop a suite
of tools for the encoding and exploration of representational systems within our
framework, meaning researchers and other experts can have a common set of
tools to evaluate representational systems.
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